فشرده سازی داده های پلاریمتری سار
thesis
- وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی شیراز - دانشکده مهندسی برق و الکترونیک
- author علیرضا هوشمند سروستانی
- adviser کامران کاظمی محمد صادق هل فروش حبیب الله دانیالی
- publication year 1393
abstract
داده های پلاریمتری سار به دلیل اطلاعات گسترده ای که در مورد منطقه تصویربرداری شده ارائه می¬دهند امروزه بسیار مورد توجه قرار گرفته¬اند. به دلیل اطلاعاتی که سار پلاریمتری ارائه می¬دهد یکی از کاربردهای اصلی این نوع داده ها استفاده برای طبقه بندی تصاویر می¬باشد. داده های پلاریمتری سار حجم زیادی را اشغال می¬کنند و این حجم زیاد باعث مشکلاتی مانند کم شدن سرعت پردازش، پایین آمدن سرعت انتقال داده، نیاز به پهنای باند زیاد برای انتقال و نیاز به فضای ذخیره سازی زیاد می¬گردد. برای حل این مشکل در این پایان نامه روشی برای فشرده سازی داده های پلاریمتری سار ارائه شده است. در روش پیشنهادی به منظور تعیین ناحیه مورد علاقه تصاویر پلاریمتری توسط الگوریتم طبقه بندی اچ/ای/آلفا طبقه بندی می¬شوند، ناحیه مورد علاقه انتخاب می¬شود و این ناحیه و بقیه تصویر به کمک الگوریتم فشرده سازی به نحوی فشرده سازی می¬شوند که کیفیت ناحیه مورد علاقه بیشتر از ناحیه زمینه باشد. سادگی پیاده سازی الگوریتم و کیفیت بالای فشرده سازی ناحیه مورد علاقه و ناحیه زمینه بر اساس معیار کیفیت معرفی شده در متن از ویژگی های این روش می¬باشد.
similar resources
طبقه بندی پوشش های جنگلی با استفاده از داده های پلاریمتری فشرده
اخیرا رشد قابل توجهی در سیستمهای dual-polarimetry (dp) بهوجود آمده است که compact polarimetry (cp) نامیده میشود. cp یک سیستم تصویربرداریdp است که چندین مزیت مهم را نسبت به دیگر سیستمهای چندپلاریزاسیون sar دارد. از جمله آنها میتوان به قابلیت کاهش پیچیدگی سیستم، هزینه، وزن و نرخ دادههای سیستم sar اشاره کرد. یکی از زمینههای تحقیقاتی مورد توجه سنجش از دور راداری مطالعه جنگلها است، چراکه ن...
full textتعیین مرزهای بهینه برای نواحی طبقه بندی آلفا انتروپی داده پلاریمتری فشرده دو دایروی با استفاده از مفهوم حداکثر مشابهت
یکی از مهمترین اهداف پژوهشگران در حوزه پلاریمتری فشرده، پیشنهاد روشهایی جهت نزدیکتر کردن اطلاعات و نتایج حاصل از داده های پلاریمتری حالت فشرده به نتایج حاصل از داده های پلاریمتری حالت کامل می باشد. یکی از روش های پرکاربرد جهت استخراج مکانیسم های پراکندگی داده های پلاریمتری، روش طبقه بندی بر اساس فضای انتروپی-آلفا می باشد. فضای طبقه بندی انتروپی-آلفای داده حالت فشرده دو دایروی که در ادبیات موض...
full textطبقهبندی پوششهای جنگلی با استفاده از دادههای پلاریمتری فشرده
اخیرا رشد قابل توجهی در سیستمهای Dual-Polarimetry (DP) بهوجود آمده است که Compact Polarimetry (CP) نامیده میشود. CP یک سیستم تصویربرداریDP است که چندین مزیت مهم را نسبت به دیگر سیستمهای چندپلاریزاسیون SAR دارد. از جمله آنها میتوان به قابلیت کاهش پیچیدگی سیستم، هزینه، وزن و نرخ دادههای سیستم SAR اشاره کرد. یکی از زمینههای تحقیقاتی مورد توجه سنجش از دور راداری مطالعه جنگلها است، چراکه ن...
full textارائه روشی نوین برای بهبود دقت بازسازی داده حالت پلاریمتری کامل از روی داده حالت پلاریمتری دو دایروی
علیرغم این که داده حالت پلاریمتری کامل اطلاعات بسیار خوبی از اهداف زمینی فراهم می آورد، مشکلاتی از قبیل کافی نبودن عرض پوششدهی برای اهداف نظارتی و بالا بودن توان ارسالی، حجم داده، هزینه و پیچیدگی سیستم، پژوهشگران این حوزه را به سمت استفاده از حالت پلاریمتری فشرده سوق داد. در این حالت با سعی بر اینکه اطلاعات دریافتی تا حد ممکن به اطلاعات حالت پلاریمتری کامل نزدیک باشد، مشکلات حالت پلاریمتری کام...
full textطبقهبندی عارضه مبنای تصاویر پلاریمتری سار با استفاده از طبقهبندیکنندههای چندگانه ماشین بردار پشتیبان
طبقه بندی پوشش زمین یکی از کاربرد های مهم استفاده از داده های سنجش از دوری است. از میان تصاویر و دادههای مورد استفاده در این مورد، داده های پلاریمتری راداری به خاطر امکان استخراج ویژگی های زیاد و متنوع میتوانند برای طبقه بندی گزینه مناسبی باشند. در این مقاله یک روش عارضه مبنا برای طبقه بندی مناطق شهری با استفاده از داده های پلاریمتری راداری به صورت تلفیق نتایج پیکسل مبنای طبقه بندی SVM و قطعات...
full textMy Resources
document type: thesis
وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی شیراز - دانشکده مهندسی برق و الکترونیک
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023